*Corresponding author,
Co-first author

A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.

Fu L#, Li Z#, Tian C#, Liu K#, He JX, He JY, He F, Xu P, Yang J*.

Nat Protoc, 2020, 15(9): 2891-2919. Link

A clickable APEX probe for proximity-dependent proteomic profiling in yeast.

Li Y, Tian C, Liu K, Zhou Y, Yang J*, Zou P*.

Cell Chem Biol. 2020, 27(7): 858-865. Link

An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence.

Wang W†, Yang J†, Zhang J, Liu Y, Tian C, Qu B, Gao C, Xin P, Chen S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X*, Zhou J*.

Cell Host Microbe. 2020, 27(4): 601-613. Link

Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling.

Shen J†, Zhang J†, Zhou M†, Zhou H†, Cui B, Gotor C, Romero LC, Fu L, Yang J, Foyer CH, Pan Q, Shen W, Xie Y*.

Plant Cell. 2020, 32(4):1000-1017 Link

Direct proteomic mapping of cysteine persulfidation.

Fu L†, Liu K†, He J, Tian C, Yu X, Yang J*.

Antioxid Redox Signal. 2020, 33(15): 1061-1076  Link

Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. 

Huang J † , Willems P † , Wei B † , Tian C, Ferreira R, Bodra N, Gache S, Wahni K, Liu K, Vertommen D, Gevaert K, Carroll KS, Van Montagu M*, Yang J*, Van Breusegem F*, Messens J*.

Proc Natl Acad Sci U S A, 2019, 116 (42): 21256-21261. Link

Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. 

Pei J, Li X, Li W, Gao Q, Zhang Y, Wang X, Fu J, Cui S, Qu J, Zhao X, Hao D, Ju D, Liu N, Carroll KS, Yang J, Zhang EE, Cao J, Chen H*, Liu D*.  

Nat Cell Biol.  2019, 21(12): 1553-1564 Link

Sweetly profiling the cysteinome.

Yang J*.

Nat Chem Biol. 2019, 15(10): 935-936  Link

Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair.

Yang W†, Tao Y†, Wu Y, Zhao X, Ye W, Zhao D, Fu L, Tian C, Yang J, He F*, Tang L*.

Nat Commun. 2019, 10(1): 1076 Link

Proteome‐Wide Analysis of Cysteine S‐Sulfenylation Using a Benzothiazine‐Based Probe.

Fu L†, Liu K† , Ferreira RB, Carroll KS, Yang J*.

Curr Protoc Protein Sci.  2019, 95(1): e76 Link

Chemical Proteomics Reveals New Targets of Cysteine Sulfinic Acid Reductase.

Akter S†, Fu L†, Jung Y, Lo Conte M, Lawson JR, Lowther TW, Sun R, Liu K, Yang J*, Carroll KS*.

Nat Chem Biol. 2018, 14 (11): 995-1004 Link (Also see NCB's News & Views by Dr. Michel B. Toledano & Nat Methods's Research Highlights In Brief by Allison Doerr)

Dynamic Redox Balance Directs the Oocyte-to-Embryo Transition via Developmentally Controlled Reactive Cysteine Changes.

Petrova B, Liu K, Tian C, Kitaoka M, Freinkman E, Yang J*, Orr-Weaver TL*.

Proc Natl Acad Sci U S A. 2018, 115 (34): E7978-E7986 Link

Chemoproteomics Reveals Unexpected Lysine/Arginine-Specific Cleavage of Peptide Chains as a Potential Protein Degradation Machinery.

Tian C, Liu K, Sun R, Fu L, Yang J*.

Anal Chem. 2018, 90: 794-800 Link

Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products. 

Tian C, Fu L, Liu K, Sun R, Yang Y, Yang J*

Cell Chem Biol, 2017, 24(11):1416-1427 Link

Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells.

Sun R†, Fu L†, Liu K, Tian C, Yang Y, Tallman KA, Porter NA, Liebler DC, Yang J*.  

Mol Cell Proteomics, 2017, 16:1789-1800 (Editors' HighlightLink  

Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes.

Fu L†, Liu K†, Sun M, Sun R, Tian C, Bentanzos C, Tallman KA, Porter NA, Yang Y, Guo D, Liebler DC, Yang J*

Mol Cell Proteomics, 2017, 16:1815-1828 Link 

A chemoproteomic platform to assess bioactivation potential of drugs.

Sun R, Shi F, Liu K, Fu L, Tian C, Yang Y, Tallman KA, Porter NA, Yang J*

Chem Res Toxicol. 2017, 30: 1797-1803 Link

Diverse redoxome reactivity profiles of carbon nucleophiles. 
Gupta V
, Yang J, Liebler DC, Carroll KS*.
J Am Chem Soc, 2017, 139: 5588−5595 (Highlighted in C&E News) Link 
The expanding landscape of the thiol proteome. 
Yang J
*, Carroll KS, Liebler DC*.
Mol Cell Proteomics, 2016, 15: 1-11 Link

Pre-independence (2007-2015)
*Corresponding author,
Co-first author

Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

Yang J, Tallman KA, Porter NA, Liebler DC*.   

Anal Chem. 2015, 87: 2535-41 (Editors' Highlight) Link

Global, in situ, site-specific analysis of protein S-sulfenylation. 
Yang J*
, Gupta V, Tallman KA, Porter NA, Carroll KS, Liebler DC*.
Nat Protoc. 2015, 10: 1022-37 Link
Site-specific mapping and quantification of protein S-sulphenylation in cells. 
Yang J, Gupta V, Carroll KS, Liebler DC*.
Nat Commun. 2014, 5: 4776 Link

Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding the functional domain.

Yang J † , Li C † , Ding L*, Guo Q, You Q, Jin S.  

J Nat Prod. 2012, 75: 1108-1116 Link

Rapid characterization of caged xanthones in the resin of Garcinia hanburyi using multiple mass spectrometric scanning modes: the importance of biosynthetic knowledge based prediction. 
Yang J, Ding L*, Jin S, Hu L, Liu W, You Q, Guo Q. 
J Pharm Biomed Anal. 2012, 60: 71-79 Link
Metabolism of gambogic acid in rats: a rare intestinal metabolic pathway responsible for its final disposition. 
Yang J, Ding L*, Hu L, Qian W, Jin S, Sun X, Wang Z, Xiao W.
Drug Metab Dispos. 2011, 39: 617-26 Link
Comparison of electron capture-atmospheric pressure chemical ionization and electrospray ionization for the analysis of gambogic acid and its main circulating metabolite in dog plasma. 
Yang J, Ding L*, Hu L, Jin S, Liu W, Wang Z, Xiao W, Yu Q, Guo Q. 
Eur J Mass Spectrom. 2010, 16: 605-17 Link
Identification and quantitative determination of a major circulating metabolite of gambogic acid in human. 
Yang J, Ding L*, Jin S, Liu X, Liu W, Wang Z. 
J Chromatogr B Analyt Technol Biomed Life Sci. 2010, 878: 659-66 Link