Publications
*Corresponding author,
Co-first author

Proteome‐Wide Analysis of Cysteine S‐Sulfenylation Using a Benzothiazine‐Based Probe.

Fu L†, Liu K† , Ferreira RB, Carroll KS, Yang J*.

Curr Protoc Protein Sci.  in press Link

Chemical Proteomics Reveals New Targets of Cysteine Sulfinic Acid Reductase.

Akter S†, Fu L†, Jung Y, Lo Conte M, Lawson JR, Lowther TW, Sun R, Liu K, Yang J*, Carroll KS*.

Nat Chem Biol. 2018, 14 (11): 995-1004 Link (Also see NCB's News & Views by Dr. Michel B. Toledano & Nat Methods's Research Highlights In Brief by Allison Doerr)

Dynamic Redox Balance Directs the Oocyte-to-Embryo Transition via Developmentally Controlled Reactive Cysteine Changes.

Petrova B, Liu K, Tian C, Kitaoka M, Freinkman E, Yang J*, Orr-Weaver TL*.

Proc Natl Acad Sci U S A. 2018, 115 (34): E7978-E7986 Link

Chemoproteomics Reveals Unexpected Lysine/Arginine-Specific Cleavage of Peptide Chains as a Potential Protein Degradation Machinery.

Tian C, Liu K, Sun R, Fu L, Yang J*.

Anal Chem. 2018, 90: 794-800 Link

Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products. 

Tian C, Fu L, Liu K, Sun R, Yang Y, Yang J*

Cell Chem Biol, 2017, 24(11):1416-1427 Link

Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells.

Sun R†, Fu L†, Liu K, Tian C, Yang Y, Tallman KA, Porter NA, Liebler DC, Yang J*.  

Mol Cell Proteomics, 2017, 16:1789-1800 (Editors' HighlightLink  

Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes.

Fu L†, Liu K†, Sun M, Sun R, Tian C, Bentanzos C, Tallman KA, Porter NA, Yang Y, Guo D, Liebler DC, Yang J*

Mol Cell Proteomics, 2017, 16:1815-1828 Link 

A chemoproteomic platform to assess bioactivation potential of drugs.

Sun R, Shi F, Liu K, Fu L, Tian C, Yang Y, Tallman KA, Porter NA, Yang J*

Chem Res Toxicol. 2017, 30: 1797-1803 Link

Diverse redoxome reactivity profiles of carbon nucleophiles. 
Gupta V
, Yang J, Liebler DC, Carroll KS*.
J Am Chem Soc, 2017, 139: 5588−5595 (Highlighted in C&E News) Link 
The expanding landscape of the thiol proteome. 
Yang J
*, Carroll KS, Liebler DC*.
Mol Cell Proteomics, 2016, 15: 1-11 Link
 

Pre-independence (2007-2015)
*Corresponding author,
Co-first author

Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

Yang J, Tallman KA, Porter NA, Liebler DC*.   

Anal Chem. 2015, 87: 2535-41 (Editors' Highlight) Link

Global, in situ, site-specific analysis of protein S-sulfenylation. 
Yang J*
, Gupta V, Tallman KA, Porter NA, Carroll KS, Liebler DC*.
Nat Protoc. 2015, 10: 1022-37 Link
Site-specific mapping and quantification of protein S-sulphenylation in cells. 
Yang J, Gupta V, Carroll KS, Liebler DC*.
Nat Commun. 2014, 5: 4776 Link

Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding the functional domain.

Yang J † , Li C † , Ding L*, Guo Q, You Q, Jin S.  

J Nat Prod. 2012, 75: 1108-1116 Link

Rapid characterization of caged xanthones in the resin of Garcinia hanburyi using multiple mass spectrometric scanning modes: the importance of biosynthetic knowledge based prediction. 
Yang J, Ding L*, Jin S, Hu L, Liu W, You Q, Guo Q. 
J Pharm Biomed Anal. 2012, 60: 71-79 Link
Metabolism of gambogic acid in rats: a rare intestinal metabolic pathway responsible for its final disposition. 
Yang J, Ding L*, Hu L, Qian W, Jin S, Sun X, Wang Z, Xiao W.
Drug Metab Dispos. 2011, 39: 617-26 Link
Comparison of electron capture-atmospheric pressure chemical ionization and electrospray ionization for the analysis of gambogic acid and its main circulating metabolite in dog plasma. 
Yang J, Ding L*, Hu L, Jin S, Liu W, Wang Z, Xiao W, Yu Q, Guo Q. 
Eur J Mass Spectrom. 2010, 16: 605-17 Link
Identification and quantitative determination of a major circulating metabolite of gambogic acid in human. 
Yang J, Ding L*, Jin S, Liu X, Liu W, Wang Z. 
J Chromatogr B Analyt Technol Biomed Life Sci. 2010, 878: 659-66 Link